viernes, 18 de junio de 2010
martes, 15 de junio de 2010
resumen
ALIANZAS BASES DE LA FORTALEZA
En un mundo cada vez mas globalizado e independiente, la forma de sobrevivir es haciendo alianzas.
Desde el 2002 el SENA adopto la lección del sector privado, la cual empezó a trabajar intensamente en la generación y consolidación de vínculos con diferentes entidades y organizaciones, publicas, privadas, nacionales e internacionales.
Por eso se ha consolidado una política de estrategias cuyo fin de ofrecer los servicios especialmente el de la formación, con miras no solo a responder sino anticipar las demandas actuales y futuros sectores productivos del país y mundo.
Esta política también busca crear sinergias para la innovación, competitividad y emprendimiento.
Las alianzas estratégicas son de doble vía y representan un valioso instrumento para generar aun mas cercanía entre las diferentes entidades interesadas en formar parte de la cultura de emprendimiento.
Una de las actividades del programa se destaca la ampliación de cobertura, generado por convenios de múltiples instituciones utilizando sus infraestructuras para el desarrollo de las formaciones tituladas.
En el marco de la ampliación de cobertura sobresalen las uniones entre las alcaldías y gobernaciones cuyo objetivo principal es promover la formación titulada y complementaria en espacios geográficos alejados y ambientes de aprendizaje no convencionales utilizando las aulas móviles.
Adicionalmente se han fomentado espacios de trabajo conjunto con empresas y gremios en los cuales se produce una permanente interacción con el sector productivo para conocer sus necesidades.
En cuanto a relaciones internacionales de alianzas estratégicas le ha permitido asociarse y cooperar con prestigiosas empresas y entidades educativas de talla mundial, de esta manera se han logrado intercambios de experiencias, conocimientos y tecnología.
Gracias a estas alianzas estratégicas 2603 aprendices de todas las regiones de Colombia se han beneficiado con formación en diferentes tecnologías, en el marco de proyectos internacionales, y más de 100 han tenido la oportunidad de salir del país a realizar pasantias a países como México, Francia y España.
De igual forma 866 instructores han sido beneficiarios con actualizaciones en Colombia y el exterior, con la oportunidad de profundizar sus conocimientos y en algunos casos certificarse internacionalmente.
Con esta alianza la entidad busca mejorar el perfil de los colombianos.
lunes, 7 de junio de 2010
miércoles, 26 de mayo de 2010
ESTACIÓN
La Geodesia trata del levantamiento y de la representación de la forma de la superficie de la tierra, global y parcial con sus formas naturales y artificiales. La topografía representa las superficies planas limitándose a pequeñas extensiones de terreno, mientras que la Geodesia representa las áreas mayores, y para esto requiere de fundamentos matemáticos, físicos, geofísicos y otros. Por su parte, el levantamiento geodésico es un conjunto de procedimientos y operaciones de campo destinados a determinar las coordenadas geográficas y elevaciones sobre el nivel de referencia elegido de puntos seleccionados y demarcados sobre el terreno. Estos, son utilizados para proyectos de ingeniería, arquitectura, construcción, exploración y explotación minera, túneles, levantamientos catastrales y más. Así mismo, la geodesia satelital es utilizada para generación de redes geodésicas vinculadas a redes nacionales, determinación y cálculo de MTL – PTL para proyectos de minas e ingeniería, determinación y cálculo retransformación de coordenadas entre distintas proyecciones cartográficas y mucho más. Para trabajos geodésicos se utilizan instrumentos como GPS, cámara aerofotogramétrica, estación total, fototeodolito, giroscopio, gravímet ro, laserscanner, mira, nivel, taquímetros, microscopios, sextante y muchos más.
Levantamiento topográfico:
Es el conjunto de operaciones que se necesita realizar para poder confeccionar una correcta representación gráfica planimétrica, o plano, de una extensión cualquiera de terreno, sin dejar de considerar las diferencias de cotas o desniveles que presente dicha extensión. Este plano es esencial para emplazar correctamente cualquier obra que se desee llevar a cabo, así como lo es para elaborar cualquier proyecto. Es primordial contar con una buena representación gráfica, que contemple tanto los aspectos altimétricos como planimétricos, para ubicar de buena forma un proyecto.Para realizar un levantamiento topográfico se cuenta con varios instrumentos, como el nivel y la estación total. En esta práctica se hará uso del taquímetro o teodolito, empleando el sistema de la taquimetría, para realizar el levantamiento topográfico de un sector ubicado en el Parque EcuadorAngulos y direcciones:
Meridiano: línea imaginaria o verdadera que se elige para referenciar las mediciones que se harán en terreno y los cálculos posteriores. Éste puede ser supuesto, si se elige arbitrariamente; verdadero, si coincide con la orientación Norte-Sur geográfica de la Tierra, o magnético si es paralelo a una aguja magnética libremente suspendida. Azimut: ángulo entre el meridiano y una línea, medido siempre en el sentido horario, ya sea desde el punto Sur o Norte del meridiano, estos pueden tener valores de entre 0 y 400 gradianes. Los azimutes se clasifican en verdaderos, supuestos y magnéticos, según sea el meridiano elegido como referencia. Los azimutes que se obtienen por medio de operaciones posteriores reciben el nombre de azimutes calculados.
La taquimetría:Es un sistema de levantamiento que consta en determinar la posición de los puntos del terreno por radiación, refiriéndolo a un punto especial (estación) a través de la medición de sus coordenadas y su desnivel con respecto a la estación. Este punto especial es el que queda determinado por la intersección del eje vertical y el horizontal de un taquímetro centrado sobre un punto fijado en terreno.
La poligonación:Se utiliza para ligar las distintas estaciones necesarias para representar el terreno.Para establecer una poligonal cerrada basta calcular el azimut de un lado del polígono y los ángulos interiores formados por los ángulos de este.N E2
1 E3
2 E1
3E4
Poligonal:Línea quebrada y cerrada que liga las distintas estaciones desde donde se harán y a las cuales estarán referidas las mediciones para los puntos del levantamiento.
Altura Instrumental:Distancia vertical que separa el eje óptico del taquímetro de la estación sobre la cual está ubicado.Estación:punto del terreno sobre el cual se ubica el instrumento para realizar las mediciones y a la cual éstas están referidas.Desnivel:Diferencia de cota o altura que separa a dos puntos.Radiación:Una vez que las estaciones están fijas se utiliza el método de radiación para establecer las posiciones de los diversos puntos representativos del terreno. Este consiste en fijar la posición relativa de los diversos puntos con respecto a la estación desde la cual se realizaron las mediciones.Para lograr esto se procede de la siguiente forma:i ) Se instala el taquímetro en la estación.ii) Se fija en el taquímetro el cero del ángulo horizontal y se hace coincidir con alguna de las otras estaciones, quedando como eje de referencia la línea formada por ambas estaciones.iii) Se procede a realizar las diversas lecturas ( ángulo vertical, ángulo horizontal, hilo medio, hilo superior, hilo inferior )a los diversos puntos.iv) Se calcula DX y DY con respecto a la estación.Se calcula las coordenadas norte este de los puntos como sigue:N = N estación + DYE = E estación + DXUna vez obtenidas las coordenadas de los puntos se procede a dibujarlos para obtener la representación planimétrica del terreno. Todo lo referente al cálculo de las cotas de los puntos se realiza de la siguiente forma.Se designa una cota arbitraria al PR elegido. Se realizan a este las lecturas de hilos y ángulos desde E1. La cota de ésta se calcula como sigue.CE1 = CPR - HI + hm - DVCE1: cota de E1CPR : cota del PRHI : altura instrumental en E1hm : hilo medioDV = KG sen z cos zLuego se realizan las lecturas desde E1 a E2, E2 a E3 , E3 a E4 y E4 a E1.Las cotas de las estaciones se calculan como sigue.CEn = CE(n-1) - HI - hm + DVHabiendo ya calculado las cotas se debe realizar una corrección de estas, debido a que en E1 se partió con una cota y se terminó con otra.LuegoEc = CE1 inicial - CE1 finalLa cota corregida de cada una de las estaciones se calcula de la siguiente forma.CEn' = CEn + ( Ec / D total ) * di D total : distancia total recorrida di : distancia acumuladaCon las cotas corregidas ya calculadas se procede a determinar las cotas de los diversos puntos.Para un punto radiado desde la estación n se calcula la cota de la siguiente forma.Cpto = CEn + HI - hm + DV
Curva de nivel:l
La Geodesia trata del levantamiento y de la representación de la forma de la superficie de la tierra, global y parcial con sus formas naturales y artificiales. La topografía representa las superficies planas limitándose a pequeñas extensiones de terreno, mientras que la Geodesia representa las áreas mayores, y para esto requiere de fundamentos matemáticos, físicos, geofísicos y otros. Por su parte, el levantamiento geodésico es un conjunto de procedimientos y operaciones de campo destinados a determinar las coordenadas geográficas y elevaciones sobre el nivel de referencia elegido de puntos seleccionados y demarcados sobre el terreno. Estos, son utilizados para proyectos de ingeniería, arquitectura, construcción, exploración y explotación minera, túneles, levantamientos catastrales y más. Así mismo, la geodesia satelital es utilizada para generación de redes geodésicas vinculadas a redes nacionales, determinación y cálculo de MTL – PTL para proyectos de minas e ingeniería, determinación y cálculo retransformación de coordenadas entre distintas proyecciones cartográficas y mucho más. Para trabajos geodésicos se utilizan instrumentos como GPS, cámara aerofotogramétrica, estación total, fototeodolito, giroscopio, gravímet ro, laserscanner, mira, nivel, taquímetros, microscopios, sextante y muchos más.
Levantamiento topográfico:
Es el conjunto de operaciones que se necesita realizar para poder confeccionar una correcta representación gráfica planimétrica, o plano, de una extensión cualquiera de terreno, sin dejar de considerar las diferencias de cotas o desniveles que presente dicha extensión. Este plano es esencial para emplazar correctamente cualquier obra que se desee llevar a cabo, así como lo es para elaborar cualquier proyecto. Es primordial contar con una buena representación gráfica, que contemple tanto los aspectos altimétricos como planimétricos, para ubicar de buena forma un proyecto.Para realizar un levantamiento topográfico se cuenta con varios instrumentos, como el nivel y la estación total. En esta práctica se hará uso del taquímetro o teodolito, empleando el sistema de la taquimetría, para realizar el levantamiento topográfico de un sector ubicado en el Parque EcuadorAngulos y direcciones:
Meridiano: línea imaginaria o verdadera que se elige para referenciar las mediciones que se harán en terreno y los cálculos posteriores. Éste puede ser supuesto, si se elige arbitrariamente; verdadero, si coincide con la orientación Norte-Sur geográfica de la Tierra, o magnético si es paralelo a una aguja magnética libremente suspendida. Azimut: ángulo entre el meridiano y una línea, medido siempre en el sentido horario, ya sea desde el punto Sur o Norte del meridiano, estos pueden tener valores de entre 0 y 400 gradianes. Los azimutes se clasifican en verdaderos, supuestos y magnéticos, según sea el meridiano elegido como referencia. Los azimutes que se obtienen por medio de operaciones posteriores reciben el nombre de azimutes calculados.
La taquimetría:Es un sistema de levantamiento que consta en determinar la posición de los puntos del terreno por radiación, refiriéndolo a un punto especial (estación) a través de la medición de sus coordenadas y su desnivel con respecto a la estación. Este punto especial es el que queda determinado por la intersección del eje vertical y el horizontal de un taquímetro centrado sobre un punto fijado en terreno.
La poligonación:Se utiliza para ligar las distintas estaciones necesarias para representar el terreno.Para establecer una poligonal cerrada basta calcular el azimut de un lado del polígono y los ángulos interiores formados por los ángulos de este.N E2
1 E3
2 E1
3E4
Poligonal:Línea quebrada y cerrada que liga las distintas estaciones desde donde se harán y a las cuales estarán referidas las mediciones para los puntos del levantamiento.
Altura Instrumental:Distancia vertical que separa el eje óptico del taquímetro de la estación sobre la cual está ubicado.Estación:punto del terreno sobre el cual se ubica el instrumento para realizar las mediciones y a la cual éstas están referidas.Desnivel:Diferencia de cota o altura que separa a dos puntos.Radiación:Una vez que las estaciones están fijas se utiliza el método de radiación para establecer las posiciones de los diversos puntos representativos del terreno. Este consiste en fijar la posición relativa de los diversos puntos con respecto a la estación desde la cual se realizaron las mediciones.Para lograr esto se procede de la siguiente forma:i ) Se instala el taquímetro en la estación.ii) Se fija en el taquímetro el cero del ángulo horizontal y se hace coincidir con alguna de las otras estaciones, quedando como eje de referencia la línea formada por ambas estaciones.iii) Se procede a realizar las diversas lecturas ( ángulo vertical, ángulo horizontal, hilo medio, hilo superior, hilo inferior )a los diversos puntos.iv) Se calcula DX y DY con respecto a la estación.Se calcula las coordenadas norte este de los puntos como sigue:N = N estación + DYE = E estación + DXUna vez obtenidas las coordenadas de los puntos se procede a dibujarlos para obtener la representación planimétrica del terreno. Todo lo referente al cálculo de las cotas de los puntos se realiza de la siguiente forma.Se designa una cota arbitraria al PR elegido. Se realizan a este las lecturas de hilos y ángulos desde E1. La cota de ésta se calcula como sigue.CE1 = CPR - HI + hm - DVCE1: cota de E1CPR : cota del PRHI : altura instrumental en E1hm : hilo medioDV = KG sen z cos zLuego se realizan las lecturas desde E1 a E2, E2 a E3 , E3 a E4 y E4 a E1.Las cotas de las estaciones se calculan como sigue.CEn = CE(n-1) - HI - hm + DVHabiendo ya calculado las cotas se debe realizar una corrección de estas, debido a que en E1 se partió con una cota y se terminó con otra.LuegoEc = CE1 inicial - CE1 finalLa cota corregida de cada una de las estaciones se calcula de la siguiente forma.CEn' = CEn + ( Ec / D total ) * di D total : distancia total recorrida di : distancia acumuladaCon las cotas corregidas ya calculadas se procede a determinar las cotas de los diversos puntos.Para un punto radiado desde la estación n se calcula la cota de la siguiente forma.Cpto = CEn + HI - hm + DV
Curva de nivel:l
ínea imaginaria que une en forma continua todos los puntos del terreno que poseen una misma cota, también se puede definir como la intersección de un plano horizontal imaginario, de cota definida, con el terreno. Las curvas de nivel poseen una serie de características, que son esenciales para su interpretación. A continuación se enunciarán las más importantes:Son líneas continuas.Son siempre cerradas, aunque si el sector que comprende el levantamiento es pequeño, el plano no alcanzará a tomar una curva de nivel completa.La distancia horizontal que separa a dos curvas de nivel consecutivas es inversamente proporcional a la pendiente.En las pendientes uniformes, las curvas de nivel se separan uniformemente. Si son muy cercanas en las elevaciones más altas y más espaciadas en los niveles más bajos, indica que la pendiente es cóncava. Cuando hay mayor espaciamiento en la parte más alta y cercanía en la parte inferior, significa que la pendiente es convexa.Una curva de nivel no puede quedar entre dos de mayor o menor cota.Las curvas de nivel son perpendiculares a las líneas de máxima pendiente.Están establecidas siempre en cotas de números enteros, generalmente en metros.Las curvas de nivel nunca se cruzan ni se juntan, salvo en acantilados o casos muy especiales.Son equidistantes, es decir, entre dos curvas consecutivas existe el mismo desnivel.
Nivelacion:Se denomina nivelación al conjunto de operaciones que tienden a determinar las diferencias de altura del lugar físico que se desee estudiar; este lugar puede ser tanto un área, un recorrido rectilíneo o curvo, como un número determinado de puntos específicos.Nivelacion Directa, topográfica o geométrica:Es el método más preciso para determinar alturas, y es el que se emplea más frecuentemente.Para la nivelación directa se requiere un instrumento que sea capaz de dirigir hacia A y B visuales horizontales para hacer una lectura sobre la mira.La cota requerida B se obtiene: CB=CA+lA-lBCuando los puntos cuya cota se desea averiguar, no son visibles, o están a gran distancia, se recurre a realizar sucesivos cambios de la posición del instrumental mediante puntos llamados de cambio, sobre los que se hace una lectura de adelante (previa al cambio) y una lectura de atrás (luego del cambio) ya que su cota es conocida. Así se van ligando las mediciones para que compatibilicen con un mismo sistema de referencia.Nivelación cerrada:consiste en ir midiendo la diferencia de altura entre los puntos del recorrido y calculando las cotas de éstos, para finalmente cerrar la nivelación realizando una lectura sobre el mismo punto en que se comenzó ésta o bien sobre otro punto del cual ya se conozca la cota. La ventaja de este método es que se puede averiguar inmediatamente si la nivelación fue realizada de forma correcta, calcular el error de cierre de ésta y hacer las correcciones pertinentes.Punto de Referencia (PR):Punto de cota conocida.
Nivelacion:Se denomina nivelación al conjunto de operaciones que tienden a determinar las diferencias de altura del lugar físico que se desee estudiar; este lugar puede ser tanto un área, un recorrido rectilíneo o curvo, como un número determinado de puntos específicos.Nivelacion Directa, topográfica o geométrica:Es el método más preciso para determinar alturas, y es el que se emplea más frecuentemente.Para la nivelación directa se requiere un instrumento que sea capaz de dirigir hacia A y B visuales horizontales para hacer una lectura sobre la mira.La cota requerida B se obtiene: CB=CA+lA-lBCuando los puntos cuya cota se desea averiguar, no son visibles, o están a gran distancia, se recurre a realizar sucesivos cambios de la posición del instrumental mediante puntos llamados de cambio, sobre los que se hace una lectura de adelante (previa al cambio) y una lectura de atrás (luego del cambio) ya que su cota es conocida. Así se van ligando las mediciones para que compatibilicen con un mismo sistema de referencia.Nivelación cerrada:consiste en ir midiendo la diferencia de altura entre los puntos del recorrido y calculando las cotas de éstos, para finalmente cerrar la nivelación realizando una lectura sobre el mismo punto en que se comenzó ésta o bien sobre otro punto del cual ya se conozca la cota. La ventaja de este método es que se puede averiguar inmediatamente si la nivelación fue realizada de forma correcta, calcular el error de cierre de ésta y hacer las correcciones pertinentes.Punto de Referencia (PR):Punto de cota conocida.
Punto de Cambio:Punto de cota desconocida y que sirve para hacer un cambio de posición instrumental.
Punto intermedio:Punto de cota desconocida y que no sirve de apoyo para un cambio de posición instrumental.Lectura de atrás:Lectura que se hace sobre un punto del que ya se conoce la cota.
Lectura intermedia: Lectura hecha sobre un punto de cota desconocida o punto intermedio.
Lectura de adelante:Lectura que se hace sobre un punto de cambio antes de efectuar el cambio de posición instrumental. También es una lectura de adelante la que se hace sobre un punto de referencia para cerrar la nivelación.
viernes, 7 de mayo de 2010
martes, 6 de abril de 2010
martes, 9 de marzo de 2010
instalaciones hidraulicas
Las instalaciones hidráulicas y sanitarias siempre han ocupado un lugar importante dentro del diseño y construcción de cualquier edificación. El trazado, diseño y construcción adecuados de este tipo de instalaciones garantiza el funcionamiento óptimo de los aparatos hidráulicos y sanitarios y satisfacen las necesidades del usuario, de acuerdo con una serie de condiciones establecidas previamente
jueves, 4 de marzo de 2010
HISTORIA DE LOS EQUIPOS
HISTORIA DE LOS EQUIPOS
Remontándonos alrededor del ano 3000 a. de C. los babilonios y egipcios utilizaban ya cuerdas y cadenas para la medición de distancias. Hasta el 560 a. de C. no se tienen referencias de nueva instrumentación hasta que Anaximando introdujo el "Gnomon", aunque se cree que a este le pudo llegar alguna referencia de los babilonios o egipcios.
Entre los primeros usuarios de este nuevo instrumento encontramos a Metón y Eratóstenes para la determinación de la dirección Norte y la circunferencia de la tierra respectivamente. La "dioptra" o plano horizontal para la medición de ángulos y nivelación tenía su principio en un tubo en "U" con agua el cual servía para horizontalizar la plataforma.
El "corobates" o primer aproximación de un nivel, era una regla horizontal con patas en las cuatro esquinas, en la parte superior de la regla había un surco donde se vertía agua para usarla como nivel. Por otro lado Herón menciona la forma de obtener un medidor de distancia por medio de las revoluciones de una rueda.
La Brújula desde su nacimiento con los chinos hasta la referencia en 1187 de Alexander Neckman, con el desarrollo posterior introducido por Leonardo Da Vinci y Schmalcalder llegó a ser la precursora del teodolito.
En 1720 se construyó el primer teodolito como tal, este venia provisto de cuatro tornillos nivelantes, cuya tutoría es de Jonathan Sisson (numero de tornillos que casi hasta la actualidad, se siguen usando en los teodolitos americanos).
Sobre el 1740 aparece la primera escuadra doble, construida por el mecánico Adans.
El primer distanciómetro electro-óptico se fabricó en Rusia en el 1936, promovido por el Instituto de óptica Gubernamental. Este tipo de instrumento se empleó en el distanciómetro Aga fabricado en Estocolmo en 1948.
En 1957, Wadley obtuvo un distanciómetro de microondas, el Telurometer. Hasta 1968 no aparecerán los distanciómetros electro-ópticos de láser. Wild fabricará el DI-10, distanciómetro de pequeñas dimensiones, que unido a un teodolito proporcionaba un gran beneficio para las medidas topográficas, tanto en rapidez como en precisión.
precios de materiales
PRECIOS DE MATERIALES
CEMENTO: Argo blanco 20kg $16.100 40kg $16.000 2 kg $ 4.300
Diamante 50kg $16.000
CEMENTO: Argo blanco 20kg $16.100 40kg $16.000 2 kg $ 4.300
Diamante 50kg $16.000
Pintura: kolor 5 gl 136.900 2.5 gl 69.900 1 gl 29.500 1/4 gl 10.000
viniltex 5 gl 226.400 2.5 gl114.400 1 gl46.000 1/4 gl 14.300
vinilico 5 gl 179.900 2.5 gl 97.500 1 gl38.450 1/4 gl 11.750
Pisos: Madera laminado $23.900 x m2 Cerámica $24.200 x m2 duro piso
Cerámica $22.300 x m2 Adriana Porcelana tos $40.900 x m2
Porcelana tos $45.900 x m2 Játiva gres $19.900 x m2 gres$ 29.900 x m2
Ladrillo: multiperforadaro $440c/u cuarto $415c/u medialuna$ 460c/u
Calado estrella $525c/u
Bloques: bloque Nº 5 estándar $690c/u bloque Nº5 $680c/u
Medios bloques $ 460c/u Medios aligerante $ 3.600c/u
Bloques mellizo $ 570c/u
Estuco: corona 5 k $4.800 25k $ 19.500
Arena: cernida 1m3 $29.300 triturada 1m3 $34.200 fina 1m3 $30.900
Arena cernida paladas 25k $945
Triturado: 3/4 1m3 $41.500 3/8 1m3 $46.400 Triturado ¾ paladas 25k $1250
LA CIMENTACIÓN
La cimentación es la parte estructural del edificio, encargada de transmitir las cargas al terreno, el cual es el único elemento que no podemos elegir, por lo que la cimentación la realizaremos en función del mismo. Al mismo tiempo este no se encuentra todo a la misma profundidad por lo que eso será otro motivo que nos influye en la decisión de la elección de la cimentación adecuada.
La cimentación es la parte estructural del edificio, encargada de transmitir las cargas al terreno, el cual es el único elemento que no podemos elegir, por lo que la cimentación la realizaremos en función del mismo. Al mismo tiempo este no se encuentra todo a la misma profundidad por lo que eso será otro motivo que nos influye en la decisión de la elección de la cimentación adecuada.
Las cimentaciones se clasifican:-Cimentaciones superficiales -Cimentaciones profundas -
Cimentaciones especiales
Las cimentaciones superficiales engloban las zapatas en general y las losas de cimentación. Los distintos tipos de cimentación superficial dependen de las cargas que sobre ellas rehacen.
Puntuales: Zapatas aisladas Lineales: Zapatas corridas Superficiales: Losas de cimentación.
Cimentación de las tuberías. Los tubos se colocarán directamente sobre el fondo de las zanjas cuando el terreno así lo permita y en caso contrario se extenderá la tubería sobre un entresuelo de piedra y cascajo fino o como lo indique el Interventor. Cuando en el fondo de la zanja se encuentren piedras, hay que profundizar la zanja por lo menos 0.25 m más.
Losas o placas de cimentación: Elemento estructural de hormigón armado cuyas dimensiones en planta son muy elevadas respecto a su canto. Define un plano normal a la dirección de los soportes.
Las zapatas: pueden ser de hormigón en masa o armado con planta cuadrada o rectangular como cimentación de soportes verticales pertenecientes a estructuras de edificación, sobre suelos homogéneos de estratigrafía sensiblemente horizontal.
ZAPATAS AISLADAS: Es aquella zapata en al que descansa o recae un solo pilar. Encargada de transmitir a través de su superficie de cimentación las cargas al terreno. Una variante de zapata aislada aparece en edificios con junta de dilatación y en este caso se denomina "zapata ajo pilar en junta de diapasón".
ZAPATAS AISLADAS DESCENTRADAS: Las zapatas descentradas tienen la particularidad de que las cargas que sobre ellas recaen, lo hacen de forma descentrada, por lo que se producen unos momentos de vuelco que habrá que contrarrestar. Pueden ser de medianería y de esquina.
Zapata corrida bajo dos pilares: Zapata combinada: Aquella sobre la que apoyan dos pilares separados una distancia que oscila de 3 a 5 mts de distancia. Para calcularla hay que hacer pasar la resultante de los esfuerzos provenientes de los soportes por el centro de gravedad de la zapata.
Zapata asociada: Aquella sobre la que apoyan dos soportes muy próximos. Se une por el bulbo de presiones.Jugando con el vuelo desaparece el momento flector positivo, que en un primer momento nos aparece.Zapata corrida bajo tres o más pilares. Viga reversa o viga de cimentación.
CIMENTACIÓN POR PILOTES:
CIMENTACIÓN POR PILOTES:
En ocasiones, cuando comenzamos a realizar la excavación para la ejecución de obra, podemos encontrarnos diversas dificultades para encontrar el estrato resistente o firme donde queremos cimentar. O simplemente se nos presenta la necesidad de apoyar una carga aislada sobre un terreno sin firme, o difícilmente accesible por métodos habituales.
Los cimientos, a fin de distribuir la carga, pueden extenderse horizontalmente, pero también pueden desarrollarse verticalmente hasta alcanzar estratos más bajos capaces de soportarla. En estos casos se recurre a la solución de cimentación profunda, que se constituye por medio de muros verticales profundos de hormigón, los muros pantalla o bien a base de pilares hincados o perforados en el terreno, denominados pilotes.
LOS TIPOS DE PILOTES SON:
· Pilotes apoyados en manto resistente.
· Pilotes trabajando por fricción del fuste con el suelo.
· Una combinación de ambos, es decir, por apoyo directo en la capa resistente y por rozamiento sobre una parte de su longitud empotrada
miércoles, 24 de febrero de 2010
brujula
La brújula o compás magnético es un instrumento que sirve de orientación, que tiene su fundamento en la propiedad de las agujas magnetizadas. Por medio de una aguja imantada señala el Norte magnético, que es ligeramente diferente para cada zona del planeta, y distinto del Norte geográfico. Utiliza como medio de funcionamiento el magnetismo terrestre. La aguja imantada indica la dirección del campo magnético terrestre, apuntando hacia los polos norte y sur. Únicamente es inútil en las zonas polares norte y sur, debido a la convergencia de las líneas de fuerza del campo magnético terrestre.
Téngase en cuenta que a mediados del siglo XX la brújula magnética comenzó a ser substituida -principalmente en aeronaves- por la brújula giroscópica y que actualmente los giróscopos de tales brújulas están calibrados por haces de láser.
En la actualidad la brújula está siendo reemplazada por sistemas de navegación más avanzados y completos, que brindan más información y precisión; sin embargo, aún es muy popular en actividades que requieren alta movilidad o que impiden, debido a su naturaleza, el acceso a energía eléctrica, de la cual dependen los demás sistemas.
Como se construye una brújula
Materiales:
- Un imán
- Un corcho de botella
- Un alfiler
- Un recipiente de boca ancha con agua
- Un plano de tu ciudad, donde se indique el norte.
Procedimiento:
Toma el alfiler y frota constantemente el extremo más delgado con un polo del imán; así imantará este extremo permitiéndole saber donde están los polos magnéticos terrestres.
Seguidamente corta un disco de corcho de un centímetro de ancho y atraviesa el alfiler imantado a través de la superficie lateral. Coloca el corcho con el alfiler sobre el recipiente con agua, observarás como el alfiler se alinea con los polos magnéticos; La punta imantada se dirige al norte magnético. Coloca el recipiente sobre el plano de tu ciudad de tal manera que coincida con el norte marcado en el mapa. De esta manera podrás orientarte en tu ciudad.
viernes, 12 de febrero de 2010
topografia
TOPOGRAFÍA.- Es la ciencia que estudia el conjunto de procedimientos para determinar las posiciones de puntos sobre la superficie de la tierra,
por medio de medidas según los 3 elementos del espacio. Estos elementos pueden ser: dos distancias y una elevación, o una distancia, una dirección
y una elevación.
por medio de medidas según los 3 elementos del espacio. Estos elementos pueden ser: dos distancias y una elevación, o una distancia, una dirección
y una elevación.
Suscribirse a:
Entradas (Atom)